3.1415926535898 3f2ecd200e1dd3002a8bf56b595696f7
#link#
eb12ef3414c5f626d5b92974ede9b07c

#link#

3.1415926535898 3f2ecd200e1dd3002a8bf56b595696f7
#link#
eb12ef3414c5f626d5b92974ede9b07c

#link#

3.1415926535898 3f2ecd200e1dd3002a8bf56b595696f7
#link#
eb12ef3414c5f626d5b92974ede9b07c

#link#

3.1415926535898 3f2ecd200e1dd3002a8bf56b595696f7
#link#
eb12ef3414c5f626d5b92974ede9b07c

#link#

3.1415926535898 3f2ecd200e1dd3002a8bf56b595696f7
#link#
eb12ef3414c5f626d5b92974ede9b07c

#link#

3.1415926535898 3f2ecd200e1dd3002a8bf56b595696f7
#link#
eb12ef3414c5f626d5b92974ede9b07c

#link#

Publications
×

Warning

Error loading component: com_tags, Component not found.

Error loading component: com_tags, Component not found.

Error loading component: com_tags, Component not found.

Error loading component: com_tags, Component not found.

Error loading component: com_tags, Component not found.

Error loading component: com_tags, Component not found.

Error loading component: com_tags, Component not found.

Error loading component: com_tags, Component not found.

Error loading component: com_tags, Component not found.

Error loading component: com_tags, Component not found.

Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees

Abstract

Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field
level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture.

Gennaro Di Prisco, Valeria Cavaliere, Desiderato Annoscia, Paola Varricchio, Emilio Caprio, Francesco Nazzi, Giuseppe Gargiulo, and Francesco Pennacchio


Proc Natl Acad Sci U S A. 2013 Oct 21

Full article

Contrasting effects of imidacloprid on habituation in 7- and 8-day-old honeybees (Apis mellifera)

 

Abstract

We examined the effects of sublethal doses (0.1, 1, and 10 ng per animal) of a new neonicotinoid insecticide, Imidacloprid, on habituation of the proboscis extension reflex (PER) in honeybees (Apis mellifera) reared under laboratory conditions. In untreated honeybees, the habituation of the proboscis extension reflex is age-dependent and there is a significant increase in the number of trials required for habituation in older bees (8-10 days old) as compared to very young bees (4-7 days old). Imidacloprid alters the number of trials needed to habituate the honeybee response to multiple sucrose stimulation. In 7-day-old bees, treatment with Imidacloprid leads to an increase in the number of trials necessary to abolish the response, whereas in 8-day-old bees, it leads to a reduction in the number of trials for habituation (15 min and 1 h after treatment), and to an increase 4 h after treatment. The temporal effects of Imidacloprid in both 7- and 8-day-old bees suggest that 4h after treatment the observed effects are due to a metabolite of Imidacloprid, rather than to Imidacloprid itself. Our results suggest the existence of two distinct subtypes of nicotinic receptors in the honeybee that have different affinities to Imidacloprid and are differentially expressed in 7- and 8-day-old individuals.

Guez D, Suchail S, Gauthier M, Maleszka R, Belzunces LP. Neurobiol Learn Mem. 2001 Sep;76(2):183-91.

Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera

Abstract

We examined the effects of sublethal doses (0.1, 1, and 10 ng per animal) of a new neonicotinoid insecticide, Imidacloprid, on habituation of the proboscis extension reflex (PER) in honeybees (Apis mellifera) reared under laboratory conditions. In untreated honeybees, the habituation of the proboscis extension reflex is age-dependent and there is a significant increase in the number of trials required for habituation in older bees (8-10 days old) as compared to very young bees (4-7 days old). Imidacloprid alters the number of trials needed to habituate the honeybee response to multiple sucrose stimulation. In 7-day-old bees, treatment with Imidacloprid leads to an increase in the number of trials necessary to abolish the response, whereas in 8-day-old bees, it leads to a reduction in the number of trials for habituation (15 min and 1 h after treatment), and to an increase 4 h after treatment. The temporal effects of Imidacloprid in both 7- and 8-day-old bees suggest that 4h after treatment the observed effects are due to a metabolite of Imidacloprid, rather than to Imidacloprid itself. Our results suggest the existence of two distinct subtypes of nicotinic receptors in the honeybee that have different affinities to Imidacloprid and are differentially expressed in 7- and 8-day-old individuals.

Suchail S, Guez D, Belzunces LP. Environ Toxicol Chem. 2001 Nov;20(11):2482-6.

Assessment of the environmental exposure of honeybees to particulate matter containing neonicotinoid insecticides coming from corn coated seeds

Abstract

Since seed coating with neonicotinoid insecticides was introduced in the late 1990s, European beekeepers have reported severe colony losses in the period of corn sowing (spring). As a consequence, seed-coating neonicotinoid insecticides that are used worldwide on corn crops have been blamed for honeybee decline. In view of the currently increasing crop production, and also of corn as a renewable energy source, the correct use of these insecticides within sustainable agriculture is a cause of concern. In this paper, a probable--but so far underestimated--route of environmental exposure of honeybees to and intoxication with neonicotinoid insecticides, namely, the atmospheric emission of particulate matter containing the insecticide by drilling machines, has been quantitatively studied. Using optimized analytical procedures, quantitative measurements of both the emitted particulate and the consequent direct contamination of single bees approaching the drilling machine during the foraging activity have been determined. Experimental results show that the environmental release of particles containing neonicotinoids can produce high exposure levels for bees, with lethal effects compatible with colony losses phenomena observed by beekeepers.

Tapparo A, Marton D, Giorio C, Zanella A, Soldà L, Marzaro M, Vivan L, Girolami V.

Environ Sci Technol. 2012 Mar 6;46(5):2592-9. doi: 10.1021/es2035152. Epub 2012 Feb 17.

 

Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera)

Abstract

Global pollinators, like honeybees, are declining in abundance and diversity, which can adversely affect natural ecosystems and agriculture. Therefore, we tested the current hypotheses describing honeybee losses as a multifactorial syndrome, by investigating integrative effects of an infectious organism and an insecticide on honeybee health. We demonstrated that the interaction between the microsporidia Nosema and a neonicotinoid (imidacloprid) significantly weakened honeybees. In the short term, the combination of both agents caused the highest individual mortality rates and energetic stress. By quantifying the strength of immunity at both the individual and social levels, we showed that neither the haemocyte number nor the phenoloxidase activity of individuals was affected by the different treatments. However, the activity of glucose oxidase, enabling bees to sterilize colony and brood food, was significantly decreased only by the combination of both factors compared with control, Nosema or imidacloprid groups, suggesting a synergistic interaction and in the long term a higher susceptibility of the colony to pathogens. This provides the first evidences that interaction between an infectious organism and a chemical can also threaten pollinators, interactions that are widely used to eliminate insect pests in integrative pest management.

Alaux C, Brunet JL, Dussaubat C, Mondet F, Tchamitchan S, Cousin M, Brillard J, Baldy A, Belzunces LP, Le Conte Y.

Environ Microbiol. 2010 Mar;12(3):774-82. doi: 10.1111/j.1462-2920.2009.02123.x. Epub 2009 Dec 27.

Full article

disrupting food pan website small

How-Neonicotinoids-Kill-Bees-6

Newsletter

Stay updated on PAN Europe's campaigns for pesticide free food and subscribe to our quarterly newsletter:

<< Signup here! >>